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Abstract

We propose a two-layer image compression system con-

sisting of a base-layer BPG codec and a learning-based

residual layer codec. This proposal is submitted to the

Challenge on Learned Image Compression (CLIC) in April

2019. Our contribution is to integrate several known com-

ponents together to produce a result better than the original

individual components. Also, unlike the conventional two-

layer coding, our encoder and decoder take inputs also from

the base-layer decoder. In addition, we create a refinement

network to integrate the residual-layer decoded residual im-

age and the base-layer decoded image together to form the

final reconstructed image. Our simulation results indicate

that the transmitted feature maps are fairly uncorrelated to

the original image because the object boundary information

can be provided by base-layer image. The experiments show

that the proposed system achieves better performance than

BPG subjectively at the given 0.15 bit-per-pixel constraint.

1. Introduction

Recent researches reveal that the deep learning base im-

age compression methods can potentially produce better

quality images than the traditional coding scheme.

In participating in the low-rate track of CLIC 2019, we

propose a hybrid coding scheme, which consists of a BPG

codec as the base-layer, and a residual-layer, which uses

an autoencoder architecture to reduce the artifacts gener-

ated by the BPG codec at lower bitrates. This method is in-

spired by the conventional layered coding concept and the

recent deep-learning based codec in [12] and [3]. At the re-

ceiver, the decoder network combines the intermediate out-

puts of base-layer and residual-layer, and then a refinement

network resynthesizes the output image. This refinement

network can be considered as a post-processing component

to further improve the reconstructed image quality. More

specifically, our system allocates about 0.09 bit-per-pixel

(bpp) to the BPG coding and about 0.06 bpp to the residual

coding to meet the 0.15 bpp target.

Although the multi-layer coding concept exists in the

conventional coding system, our contribution is to integrate

several known components together to produce a result bet-

ter than the original individual components. Also, unlike

the conventional two-layer coding, our encoder and decoder

take inputs also from the base-layer decoder. In addition, we

create a refinement network to integrate the residual-layer

decoded residual image and the base-layer decoded image

together to form the final reconstructed image. Our simu-

lation results indicate that the transmitted feature maps are

fairly uncorrelated to the original image because the object

boundary information can be provided by base-layer image.

2. Related work

The recent learning-based image compression methods

[4, 5, 6, 9, 12, 13, 14, 15] use an autoencoder to extract

the latent representation of input data. And it is trained

to strike a balance between distortion and rate losses in an

end-to-end manner. Another common framework is a hy-

brid CNN-assisted structure [3] which typically consists of

a base-layer processing by the traditional compression al-

gorithm and a learning-based residual layer. In addition to

the post-processing, multi-layer coding [7, 10, 11] is widely

adopted in compression research for the artifact reduction.

A high efficient entropy coder and an accurate rate es-

timator have played a key role in the compression for

decades, and most of the learning-based compression meth-

ods adopt such techniques in their system. The binary arith-

metic codec with a context model is adopted by [4, 5]. The

model in [4] is a hand-crafted design and [9, 14] use the

1



learned context models.

3. Proposed Methods

3.1. Overall architecture and design philosophy

Fig.1 shows the proposed residual image compression

system. There are two data paths, the base-layer is a con-

ventional image compression method, such as BPG, and

the residual-layer is a learning based scheme to encode the

residual errors. In fact, this component is more complicated

than the traditional residual layer because it has three com-

ponent: residue encoder, residue decoder, and the refine-

ment layer. One can observe that the residue encoder takes

in the residual signal and also it takes in the reconstructed

base-layer (BPG) images. The idea is that the decoded base-

layer image is also available at the decoder. Therefore,

it may be able to provide some “side-information” of the

residual image and thus the transmitted latent variables (fea-

ture maps) do not need to contain this “side-imformation”.

The Decoder is kind of the reverse of the decoder; how-

ever, there is an additional Refinement Network, which has

two inputs: the base-layer recovered image and the out-

put of residue decoder. Therefore, the Refinement Network

plays the role of postprocessing. However, because it is in-

cluded in the training loop, its function is more than sum-

ming up the base-layer image and the enhancement residu-

als.

Fig.2 illustrates the various steps in this processing flow.

Fig.2-(a) is the original input image x; Fig.2-(b) is the base-

layer (BPG) decoded image xc; Fig.2-(c) is the residual

(difference) image at the encoder (x−xc), and the residual

image zero value is shifted to 128 for display; Fig.2-(d) is

the feature maps before quantization; Fig.2-(e) is the quan-

tized feature maps (two bitplanes each), which are transmit-

ted to the receiver. It reveals that the future maps are pretty

much uncorrelated to the original image. It shows that our

autoencoder indeed tends to compress the most meaningful

information instead of the location information offered by

BPG decoded image. Fig.2-(f) is the decoded residual im-

age; and finally, Fig.2-(g) is the Refinement Network out-

put, our reconstructed image.

Since the residual image has typically the properties of

small variation and sparsity, we hope the residual coding

and the refinement network can enhance the reconstructed

image quality at low bitrates. With the aids of BPG decoded

image as the additional information, the autoencoder can

predict where the residual might have high response more

precisely so that it should only compress the most mean-

ingful information. In our structure, the entire encoder pro-

duce the BPG codes and residual codes. Our learning based

residue encdoer and decoder originate from the autoencoder

in [12] with modification.

There are two challenge issues in designing the au-

toencder here. (1) The quantization process on the feature

maps is non-differentiable. (2) The system aims to opti-

mize both the compression rate and the distortion, where

the entropy rate defined on discrete codes is also a non-

differentiable term.

To overcome the above problems, we adopt the soft bit

conversion, an approximation to quantization mapping, and

a hand-crafted context model in the training phase. Both de-

signs come from Alexandre et al. [4]. With the introduction

of soft bit conversion and rate estimator, all the networks

can be jointly optimized in an end-to-end manner.

3.2. Detailed structure and loss function

The input to the encoder is a six-channel tensor, which a

residual image concatenates a BPG decoded image in RGB

format. Given an input image x, the BPG encoder produces

a compressed image xc. With both xc and its correspond-

ing residual image x − xc, a learning based encoder gen-

erates a set of residual feature maps z = E(x, xc), which

the value are normalized to the range of 0 to 1. The normal-

ization at the beginning of the encoder restricts the tensor

input values to [−1, 1]. In order to obtain ẑ from q = Q(z)
by the quantizer Q and its inverse operation ẑ = IQ(q),
we adopt a simple scalar quantization to reduce the num-

ber of bits for representing the residual feature maps z. It

keeps the first d bits after the decimal point in testing, and

it keeps the first d bits after soft bit conversion in training,

which is a differentiable approximation to the scalar quan-

tization, respectively. Then, we arrange q into bit planes.

We adopt the context-adaptive bit-plane encoder/decoder

(CABIC/CABID) proposed in [4] to encode the bit planes.

At the beginning of decoding stage, the residual feature

sample is first recovered by inverse quantization, and then

the refinement subnets generates the final reconstructed im-

age x̂ = R(D(ẑ, xc), xc) using the inputs of both decoded

BPG image and decoded residuals.

The data flow with dashed arrow lines shown in Fig. 1.

The soft bit conversion enables a differentiable distortion

objective loss function in the training phase. In this work,

the loss function is defined as:

L = λ× LR(q) + LD(x, x̂), (1)

where LD(x, x̂) is define by some measure of reconstruc-

tion error, such as mean square error (MSE) or MS-SSIM,

and LR(q) is rate loss predicted by CNN-based rate estima-

tor.

As for the rate estimator, the actual bitrate is roughly

proportional to the entropy of the quantized feature maps.

To estimate the entropy value, we adopt the rate estimation

model in [4] and factorize the distribution p(q̂) as a product

of conditional distributions

p(q) =

n∏

i=1

p(qi|qi−1, ...q1), (2)
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Figure 1. The architecture of the proposed image compression system with residual coding.

(a) (b) (c)

(d) (e)

(f) (g)

Figure 2. Visualization of each step in our sysem. BPG based-

layer: 0.084 bpp, MS-SSIM: 0.926, PSNR: 29.84dB; Residual-

layer: 0.1464 bpp, MS-SSIM: 0.948, PSNR: 30.51dB

where the samples of quantized feature maps q are indexed

in the raster scan order.

4. Experiments

4.1. Autoencoder and refinement network

The proposed autoencoder and refinement network is

shown in Fig 3, in which the upper and middle parts are the

encoder E and decoder D respectively. And the lower part

is the refinement subnet R. The E and D we used has sim-

ilar architecture in [12]. The R can be regarded as a feature

extraction network with 16 channels and 48 channels for

residuals and BPG decoded image respectively, and then it

resynthesizes a refined output image. The difference is that

we adopt two feature maps to achieve the constraint of 0.15

bpp on the average for the entire CLIC test set. For the con-
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Figure 3. The architecture of proposed autoencoder and refinement

network

volution layers in E, R, the notation “k5 n64-2” represents

a convolution layer with kernel size 5, 64 output channels,

and a stride of 2, and the corresponding deconvolution lay-

ers constitute D. Note that all the convolution layers are

using SAME padding and followed by a batch normaliza-

tion layer and activation function. The Concatenate layer

stacks up two input tensors instead of summation. The input

of E is normalized by the Normalize layer to zero mean

and unit variance with respect to the statistics of training

set, and the Denormalize layer reverts the normalization

process before the output layer of R.
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Model Bits/Pixel PSNR MS-SSIM

BPG 0.1497 28.391 0.939
Ours(MSE) 0.1483 27.367 0.934
Ours(MS-SSIM) 0.1491 27.485 0.940

Table 1. Compression result comparison on CLIC test dataset.

Model Bits/Pixel PSNR MS-SSIM

BPG 0.1508 27.443 0.922
Ours 0.1493 26.882 0.927
Ours w/o R 0.1502 26.668 0.922

Table 2. Comparison the importance of refinement network on Ko-

dak dataset.

4.2. Training

Our training dataset contains 1672 images provided by

CLIC 2019 [1]. In the training phase, we randomly crop

these images into 256 × 256 patches as inputs of our au-

toencoder, and we use the Kodak dataset [2] and the CLIC

2019 test set for validation and testing respectively.

The training procedure for autoencoder, refinement nets,

and the rate estimator are divided into two phases. The first

phase is to calculate the statistics of context probabilities

(ctx for short) from the feature maps z, and then optimize

the CNN-based rate estimator by minimizing L2 loss be-

tween p(qi|ctx) and p(q̃i|ctx). In the second phase, we up-

date the parameters in the autoencoder and the refinement

nets using (1).

We use Adam optimizer [8] with a mini-batch size 8 to

train two models using different measure of distortion, MSE

and MS-SSIM. Setting a learning rate at 1 · 10−5 for the

initial value and we decay it by a factor of 10 for every 200
epochs. In order to prevent the rate distortion value in (1)

changes dramatically during the training process, we turn

off LR(q) term by setting λ to 0 in the first 200 epoch.

4.3. Experiment results

Table 1 shows the comparison of the aforementioned

methods using MSE and MS-SSIM as the distortion met-

rics individually at 0.15 bpp on the test set released by CLIC

2019. In our system, using MS-SSIM as the distortion ob-

jective gives a better performance than using MSE both ob-

jectively and subjectively. Although the BPG has around

1dB higher than ours in terms of PSNR, our model slightly

outperforms on the MS-SSIM compared to the BPG. Fig.4

compares the compressed images at about the same rate us-

ing BPG alone and using out system. To see their differ-

ences more clearly, we also show the error images between

the original and the coded ones in Fig.4(b) and (d). To visu-

alize the error images, they are scaled by a factor of 5 and

the zero value is shifted to 128. These two error images

have somewhat different characteristics.

Table 2 shows the effectiveness of the refinement net-

(a) (b)

(c) (d)

Figure 4. Comparison between images using BPG and using our

system at about same rate. (a)BPG: 0.144 bpp, MS-SSIM 0.915,

PSNR 27.661dB; (b)coding errors of (a); (c)Our system: 0.152

bpp, MS-SSIM 0.934, PSNR 26.779dB; (d)coding errors of (c).

work. In this comparison, our model is trained for MS-

SSIM with and without the refinement network. In the case

of no refinement net, we replace the refinement network by

the addition operator on the BPG decoded image and the de-

coded residuals. With the refinement network, both PSNR

and MS-SSIM are improved.

5. Conclusions

In this paper, we propose an end-to-end trainable hy-

brid image coding scheme. The base-layer is the stan-

dard BPG codec, while the residual layer is a deep-learning

based codec. In addition, we modify the inputs of both

learning-based encoder and decoder, and we insert a refine-

ment net to synthesize the final reconstructed image. This

hybrid scheme has the flexibility of bitrate control; that is,

we can adjust the bitrate split between the base-layer and

the residual-layer to meet the target bitrate. Our method

slightly outperforms BPG on MS-SSIM, it still has a some-

what lower PSNR. We believe there is a good potential of

this hybrid structure for image compression, and may be

extended to video compression.

6. Acknowledgment

This work was supported in part by Ministry of Science

and Technology, Taiwan under Grant MOST 108-2634-F-

009-007 through Pervasive AL Research (PAIR) Labs, Na-

4



tional Chiao Tung University, Taiwan.

References

[1] Challenge on Learned Image Compression. http://

compression.cc/. 4

[2] Kodak PhotoCD dataset. http://r0k.us/graphics/

kodak/. 4

[3] Mohammad Akbari, Jie Liang, and Jingning Han. Dsslic:

deep semantic segmentation-based layered image compres-

sion. In ICASSP 2019-2019 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages

2042–2046. IEEE, 2019. 1

[4] D. Alexandre, C.-P. Chang, W.-H. Peng, and H.-M.

Hang. Learned image compression with soft bit-based rate-

distortion optimization. arXiv preprint arXiv:1905.00190,

2019. 1, 2
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